Finding a Path to Entrustment in Undergraduate Medical Education: A Progress Report From the AAMC Core Entrustable Professional Activities for Entering Residency Entrustment Concept Group

David R. Brown, MD, Jamie B. Warren, MD, MPH, Abbas Hyderi, MD, MPH, Ronald E. Drusin, MD, Jeremy Moeller, MD, Melvin Rosenfeld, PhD, Philip R. Orlander, MD, Sandra Yingling, PhD, Stephanie Call, MD, Kyla Terhune, MD, Janet Bull, MA, Robert Englehardt, MD, and Dianne P. Wagner, MD, for the AAMC Core Entrustable Professional Activities for Entering Residency Entrustment Concept Group

Abstract

Problem
To better prepare graduating medical students to transition to the professional responsibilities of residency, 10 medical schools are participating in an Association of American Medical Colleges pilot to evaluate the feasibility of explicitly teaching and assessing 13 Core Entrustable Professional Activities for Entering Residency. The authors focused on operationalizing the concept of entrustment as part of this process.

Approach
Starting in 2014, the Entrustment Concept Group, with representatives from each of the pilot schools, guided the development of the structures and processes necessary for formal entrustment decisions associated with students’ increased responsibilities at the start of residency.

Outcomes
Guiding principles developed by the group recommend that formal, summative entrustment decisions in undergraduate medical education be made by a trained group, be based on longitudinal performance assessments from multiple assessors, and incorporate day-to-day entrustment judgments by workplace supervisors. Key to entrustment decisions is evidence that students know their limits (discernment), can be relied on to follow through (conscientiousness), and are forthcoming despite potential personal costs (truthfulness), in addition to having the requisite knowledge and skills. The group constructed a developmental framework for discernment, conscientiousness, and truthfulness to pilot a model for transparent entrustment decision making.

Next Steps
The pilot schools are studying a number of questions regarding the pathways to and decisions about entrustment. This work seeks to inform meaningful culture change in undergraduate medical education through a shared understanding of the assessment of trust and a shared trust in that assessment.

Editor’s Note: An Invited Commentary by Th.J.(Olle) ten Cate appears on pages 736–738.

Problem
Competency-based medical education is emerging as the predominant paradigm across the education continuum. Graduate medical education (GME) clinical competency committees periodically assess and report milestones achievements for their residents, but comparable systematic competency assessment and reporting structures do not exist in undergraduate medical education (UME), where the advancement process tends to focus primarily on identifying struggling students.1,2 The transition to a competency- and outcomes-based educational model requires UME to move beyond the traditional time-based curriculum. Increased focus on competencies in GME has exposed a “gap between residency program directors’ expectations and new residents’ performance.”1 To address this gap and ensure that all medical school graduates have a basic level of preparedness for the responsibilities of residency, a drafting panel convened by the Association of American Medical Colleges (AAMC) defined 13 Core Entrustable Professional Activities for Entering Residency (Core EPAs) that all graduating medical students might be expected to perform on day one of residency without direct supervision.1,4 (See Englander et al4 for the complete list of the 13 Core EPAs.)

In addition to addressing the UME-to-GME transition, the Core EPAs framework also offers a practical process for assessing competencies.2,3 It allows educators to take a holistic approach to the assessment of competencies and their corresponding milestones because they represent the activities of the day-to-day work of the professional; situate competencies and milestones in the clinical context in which we live; make assessment more practical by clustering milestones into meaningful activities; and explicitly add the notions of trust and supervision into the assessment equation.4

By creating a shared understanding of specific professional workplace activities, clustering competencies and milestones to fit those activities, and crafting developmental models of the knowledge, skills, and attitudes associated with those activities, the Core EPAs framework guides the “gestalt” of supervisors so they are able to provide effective assessment and feedback about the ability of learners to perform specific professional activities in the workplace.3

Foundational to the Core EPAs framework are the concepts of trust5,6 and supervision,7 which include complex

Editor’s Note: An Invited Commentary by Th.J.(Olle) ten Cate appears on pages 736–738.

Problem
Competency-based medical education is emerging as the predominant paradigm across the education continuum. Graduate medical education (GME) clinical competency committees periodically assess and report milestones achievements for their residents, but comparable systematic competency assessment and reporting structures do not exist in undergraduate medical education (UME), where the advancement process tends to focus primarily on identifying struggling students.1,2 The transition to a competency- and outcomes-based educational model requires UME to move beyond the traditional time-based curriculum. Increased focus on competencies in GME has exposed a “gap between residency program directors’ expectations and new residents’ performance.”1 To address this gap and ensure that all medical school graduates have a basic level of preparedness for the responsibilities of residency, a drafting panel convened by the Association of American Medical Colleges (AAMC) defined 13 Core Entrustable Professional Activities for Entering Residency (Core EPAs) that all graduating medical students might be expected to perform on day one of residency without direct supervision.1,4 (See Englander et al4 for the complete list of the 13 Core EPAs.)

In addition to addressing the UME-to-GME transition, the Core EPAs framework also offers a practical process for assessing competencies.2,3 It allows educators to take a holistic approach to the assessment of competencies and their corresponding milestones because they represent the activities of the day-to-day work of the professional; situate competencies and milestones in the clinical context in which we live; make assessment more practical by clustering milestones into meaningful activities; and explicitly add the notions of trust and supervision into the assessment equation.4

By creating a shared understanding of specific professional workplace activities, clustering competencies and milestones to fit those activities, and crafting developmental models of the knowledge, skills, and attitudes associated with those activities, the Core EPAs framework guides the “gestalt” of supervisors so they are able to provide effective assessment and feedback about the ability of learners to perform specific professional activities in the workplace.3

Foundational to the Core EPAs framework are the concepts of trust5,6 and supervision,7 which include complex
relational issues involving the learner, the supervisor, and the context of the situation.2,5,6 Day-to-day decisions to entrust learners traditionally have been a foundation of clinical education,4 but explicit, summative entrustment decisions using the Core EPAs framework are new to medical education.1–4 Entrustment raises the issue of how to assess learners’ trustworthiness for specific activities, as well as how trust develops in supervisors, in learners, and in curricular and assessment systems. Ten medical schools are working with the AAMC on a pilot project to test the implementation and evaluation of the Core EPAs framework in UME, including how to operationalize the concept of entrustment. In this report, we describe the initial discussions and findings regarding entrustment from this pilot.

Approach

The Core EPAs pilot began in October 2014 with a goal of developing and implementing a process for making summative entrustment judgments for the graduating class of 2019. The pilot was organized into workgroups related to each of the 13 Core EPAs. Additional workgroups were formed to address concepts that affected all of the Core EPAs: Curriculum Development, Assessment, Faculty Development, and Entrustment. A steering committee was made up of the team leaders from each participating medical school. The Entrustment Concept Group, with representation from each school, was charged with guiding the development of the structures and processes for entrustment decision making. Most of the authors of this report are members of this concept group. We reviewed the literature on entrustment and iteratively discussed guiding principles, entrustment processes, trustworthiness frameworks, and findings from the other Core EPA workgroups.

Outcomes

From this literature review, we identified three initial lenses through which to consider the entrustment process—the perceived trustworthiness of the learner, the workplace-based gestalt judgment of a supervisor working with a learner, and the summative formal entrustment decision for each Core EPA. We defined entrustment across each of the Core EPAs as the point at which learners both (1) possess the requisite knowledge, skills, and attitudes needed to perform the EPA and (2) demonstrate specific elements of trustworthiness both foundationally and within the context of entrustment decisions indicating that they are able to perform the EPA without direct supervision.1,5

Creating transparency in formal summative entrustment decision-making processes

We developed guiding principles for making formal summative entrustment decisions that are transparent to faculty and learners. We recommend the following principles to operationalize a formal process for entrustment:

• Create a process to describe and maintain formal entrustment decisions by a trained group of administrators and faculty,
• Base entrustment decisions on a longitudinal view of each learner’s performance,
• Include day-to-day ad hoc workplace entrustment judgments by clinical supervisors in the body of evidence supporting formal entrustment decisions,
• Explicitly measure attributes of learners’ trustworthiness as foundational to all the Core EPAs (in addition to EPA-specific knowledge and skills),
• Gather multimodal performance evidence from multiple assessors,
• Ensure a process for formative feedback, and
• Ensure that each learner is an active participant in entrustment decisions.

Deconstructing trustworthiness

Kennedy and colleagues’ studied supervisors’ assessments of learners’ ability to work independently, and they identified four dimensions that guided supervisors’ decisions about learners’ trustworthiness for independence: knowledge/skill, discernment of limitations, truthfulness, and conscientiousness. We considered three of these dimensions—discernment, truthfulness, and conscientiousness—essential elements of entrustment that are foundational to all of the Core EPAs. We then further explored these three dimensions of trustworthiness. Like professionalism, trustworthiness includes cross-cutting behaviors and attitudes that appear in multiple contexts. Nonetheless, the individual dimensions of discernment, truthfulness, and conscientiousness unpack trustworthiness into specific observable behaviors.

An important concept in the Core EPA pilot is continuity with GME. To align with efforts in GME, we conceptualized trustworthiness in the clinical context as a skill with the aspirational “proficient” level of the Dreyfus’ model anchored to the skill level that highly reliable residents possess (see Chart 2). This framework of trustworthiness as aspirational can be used by learners, faculty, and committees charged with making entrustment decisions, through the compilation of the results of multisource assessments mapped to the Core EPAs. Elements of this trustworthiness framework are being integrated into classroom and small-group professionalism assessments and embedded in assessments for specific workplace activities. During the next stage of the pilot, we will explore the consequences of different approaches to implementing this framework across the 10 pilot schools and evaluate the validity of the rating scale across sites.

Implementing an entrustment decision-making process

Each pilot school is exploring how the guiding principles for entrustment that we developed (listed above) may impact its structures and functions and what adaptations may be required. Adoption of these principles affects the prioritization of funding and faculty time and may challenge existing medical school culture. In Table 1,
Chart 1

Developmental Framework of Trustworthiness in Medical Students, Created by the Entrustment Concept Group to Be Used by the Core Entrustable Professional Activities for Entering Residency Pilot Medical Schools, 2016

<table>
<thead>
<tr>
<th>Discernment: Awareness of the limits of one’s clinical knowledge and skill</th>
<th>Requires remediation</th>
<th>Stage 1: Novice</th>
<th>Stage 2: Advanced beginner</th>
<th>Stage 3: Competent</th>
<th>Stage 4: Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not seek or acknowledge limits. Overly confident. Jumps to conclusions.</td>
<td>Seeks to understand one’s own role and how/when to seek help.</td>
<td>Demonstrates understanding of one’s own role, its limits, and how and when to seek help.</td>
<td>Accepts advancing responsibility while appropriately recognizing one’s own limits and seeking help when needed.</td>
<td>Proactively anticipates situations requiring help and seeks help from appropriate source when needed.</td>
<td></td>
</tr>
<tr>
<td>Conscientiousness: Thoroughness and dependability in following through with assigned tasks</td>
<td>Requires remediation</td>
<td>Stage 1: Novice</td>
<td>Stage 2: Advanced beginner</td>
<td>Stage 3: Competent</td>
<td>Stage 4: Proficient</td>
</tr>
<tr>
<td>Neglects to follow protocols.</td>
<td>Follows a simple template or guide.</td>
<td>Applies a variety of simple templates and guides.</td>
<td>Follows protocols in a variety of different clinical contexts.</td>
<td>Is accountable, evidence-based, systematic, and thorough.</td>
<td></td>
</tr>
<tr>
<td>Is disorganized or neglects important details.</td>
<td>Is unable to apply past experience. May have difficulty conceptualizing information.</td>
<td>Is able to organize aspects of common situations, though may still become disorganized with increased load or complexity.</td>
<td>Is mostly organized. Identifies and prioritizes tasks, though may demonstrate lapses in times of stress.</td>
<td>Proactively prioritizes and organizes for self and team. Manages conflicting duties effectively in nearly all situations.</td>
<td></td>
</tr>
<tr>
<td>Truthfulness: Appropriate balance of truth and tact</td>
<td>Requires remediation</td>
<td>Stage 1: Novice</td>
<td>Stage 2: Advanced beginner</td>
<td>Stage 3: Competent</td>
<td>Stage 4: Proficient</td>
</tr>
<tr>
<td>Misleads, misrepresents, or purposefully omits important information.</td>
<td>Does not demonstrate deceit, though may not understand what information needs to be shared.</td>
<td>Is truthful.</td>
<td>Is a trusted source of relevant, accurate information.</td>
<td>Is reliably truthful, accurate, and appropriately detailed. Is proactively transparent, that is, discloses near miss errors.</td>
<td></td>
</tr>
<tr>
<td>Appears willfully insensitive.</td>
<td>May lack tact or be insensitive to the effects of the truth.</td>
<td>Generally demonstrates sensitivity.</td>
<td>Conveys important truths sensitively even when unwelcome.</td>
<td>Demonstrates sensitivity in all but the most difficult situations.</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from the model of trustworthiness developed by Kennedy and colleagues.

we summarize the plans for applying the guiding principles at the pilot schools as well as important remaining challenges.

The existence of the following attributes at some of the pilot schools has facilitated operationalizing the guiding principles:

- **Structures for longitudinal relationships between faculty and learners,**
- **Portfolios that allow tracking of competency assessment data,**
- **Analytic systems that allow the aggregation of competency assessment data into dashboards,** and
- **Learner handovers across educational settings within UME.**

We also identified common barriers to this work, the most notable being funding and faculty development. While longitudinal faculty–learner relationships facilitate the development of trust, schools with fewer resources find it challenging to create these programs. In addition, some schools have rigorous informatics systems in place to compile multisource assessment data into dashboards, while others are only beginning to explore this possibility and investigate the necessary funding. Finally, while some schools have conceptualized a process to render formal entrustment decisions, most are still in the exploratory phase.

Specific Core EPA–related curricula, point-of-care assessments, and faculty development are essential to adopting systems of formal entrustment decision making; these programs are being developed by the different concept groups and individual Core EPA workgroups. By providing a transparent model of entrustment for the Core EPAs, we hope to systematize ad hoc workplace entrustment judgments and provide learners with reliable feedback as they progress toward entrustment.

Next Steps

In most medical schools, a single advancement committee focuses on identifying struggling students, never discussing the majority of students who are not struggling. Therefore, monitoring every student’s progress and ultimately using aggregate evidence to render an entrustment decision for each Core EPA is a major shift. The Core EPA pilot schools are implementing a variety of EPA-specific assessments, as well as assessments of trustworthiness, in a variety of contexts across curricula. With this shift, the pilot schools are working to engage students and faculty, compile evidence, and pilot
The tool was adapted with permission from a professionalism attributes narrative assessment tool used by the Academic Medicine, Vol. 92, No. 6 / June 2017. Since medical school graduates commonly discuss their confidence in that evidence, to compile on individual students and performance evidence that they are able to compare the amount and type of entrustment. The pilot schools will examine the role of longitudinal students progress through UME. We will seek evidence of trustworthiness in non-patient-care settings, in clinical settings independent of Core EPA performance, and within the act of performing a given Core EPA. Lapses in trustworthiness may occur in situations of high stress or extreme fatigue, so we will consider how students can anticipate such lapses, which lapses are remediable, and which are not. Providing students with this kind of feedback may profoundly impact their subsequent strategies and behaviors. Multisource assessment of students in the context of the Core EPA framework may show that evidence of trustworthiness is demonstrable throughout the curriculum. Longitudinal use of the trustworthiness framework (see Chart 1) could enable students to identify training situations in which consistent discernment, conscientiousness, or truthfulness is challenging to maintain.

Chart 2

Trustworthiness Assessment Tool, Created at the University of Illinois College of Medicine as Part of the Core Entrustable Professional Activities for Entering Residency Pilot, 2016

<table>
<thead>
<tr>
<th>Discernment: Awareness of the limits of one’s clinical knowledge and skill</th>
<th>Ideal behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unacceptable behavior</td>
<td>Acceptable behavior</td>
</tr>
<tr>
<td>Is not aware of the limits of his/her skills, knowledge; fails to seek help when needed. Fails to respond in a timely manner to feedback. Tends to place blame on external factors rather than reflect on opportunities for improvement.</td>
<td>Demonstrates awareness of his/her limitations and seeks out help when needed.</td>
</tr>
<tr>
<td>Conscientiousness: Thoroughness and dependability in following through with assigned tasks</td>
<td>Ideal behavior</td>
</tr>
<tr>
<td>Unacceptable behavior</td>
<td>Acceptable behavior</td>
</tr>
<tr>
<td>Forgets needed materials. Is not prepared to contribute to solutions. Is neither thorough nor dependable in following through on assigned tasks.</td>
<td>Has read the materials and can respond appropriately to questions. Contributes to the discussion. Displays dependable behavior and follows through on assigned tasks.</td>
</tr>
<tr>
<td>Truthfulness: Appropriate balance of truth and tact</td>
<td>Ideal behavior</td>
</tr>
<tr>
<td>Unacceptable behavior</td>
<td>Acceptable behavior</td>
</tr>
<tr>
<td>Sometimes provides misleading information or conceals important information.</td>
<td>Reports only the data that he/she gathered or collected.</td>
</tr>
</tbody>
</table>

This tool was adapted with permission from a professionalism attributes narrative assessment tool used by the University of Illinois College of Medicine that also includes the assessment of the respect and participation domains.
their future patients seek to engender trust from all stakeholders. The role of the student in the entrustment process is crucial; we must win the trust of our students by establishing the validity, reliability, and appropriateness of our new assessments and by instituting mechanisms to help students meet expectations for entrustment. The limited opportunities for students to participate directly in patient care and perform the Core EPAs in current educational environments may pose a significant systematic barrier to EPA measurement. The identification of developmental paths toward entrustment can assist in identifying appropriate activities for different levels of students for each of the Core EPAs. By sharing findings among institutions, we plan to explore which interventions in curriculum, assessment, faculty development, feedback, and remediation best support the entrustment process. These factors all contribute to determining whether it is possible under the current rules and structures of UME to entrust graduating medical students to perform all 13 Core EPAs.

The Core EPAs framework requires us to learn new terminology, make changes in faculty and student approaches to feedback and assessment, and modify the structures and processes of UME assessment systems. The work of the Entrustment Concept Group specifically, and the Core EPAs pilot as a whole, seeks to inform meaningful culture change in

Table 1

<table>
<thead>
<tr>
<th>Guiding principle</th>
<th>Pilot status</th>
<th>Challenges</th>
</tr>
</thead>
</table>
| Trained group to render formal entrustment decisions | Schools are moving toward developing entrustment committees to render formal entrustment decisions, but these are not yet in place. Some schools are integrating the summative entrustment process into existing promotions processes, while others are setting up new processes. | • Faculty availability and costs
• Reliability and durability of summative entrustment decisions
• Scalability of the residency clinical competency committee model to a large medical school class
• If the discussion is mostly “data-driven” and does not include narrative information and personal experiences, how valid is this? How different from existing assessments? |
| Longitudinal view of performance | Portfolios are in varying stages of development, as are coaching programs. Not all schools have the resources for dedicated coaches or longitudinal supervisor relationships. | • Costs of faculty members to track entrustment (coaches)
• Lack of sufficient longitudinal clinical experiences for all learners
• Need for electronic system to track Core EPA performance data |
| Workplace entrustment judgments | Ad hoc assessments are not yet widely used. Schools are planning to incorporate these judgments through the use of supervision level scales. | • Faculty development
• Does this replace, or add to, existing assessments? If it’s an addition, will this overload faculty members?
• Ability for students to participate in authentic workplace activities |
| Measurement of trustworthiness | Schools are committed to specifically identifying the components of the trustworthiness framework within existing assessments, and many schools are piloting novel assessment tools that incorporate trustworthiness. The eventual goal is to make determinations of trustworthiness to inform entrustment decisions. We are still exploring how explicit judgments about trustworthiness could (or should) be made by individual assessors. | • Development of assessment tools for different contexts
• Ensuring that tools are acceptable to students and faculty
• Determining how explicit the trustworthiness language should be within different assessment tools
• Addressing bias in the assessment of trustworthiness (i.e., could discernment be culturally influenced, or influenced by gender, and subject to bias?) |
| Multimodal evidence | Multimodal assessment is embedded within different phases of the curricula but has not yet been formalized into how/what will be used for the summative entrustment decisions. | • Difficulty in getting evaluators to complete evaluations
• Ensuring adequate faculty development so that evidence is reliable |
| Formative feedback process | Several schools have developed or are developing coaching programs. Feedback is already integral to clerkship processes but will need to incorporate entrustment and EPA-specific language. | • Disagreement surrounding the issue of whether the longitudinal coaching relationship should be used to inform assessment
• Push-back from students and/or student affairs deans to feed forward data for entrustment decisions |
| Engaged learners | Students are being engaged through a variety of methods including explicit incorporation of EPAs in the curricula, the development of learner portfolios, entrustment dashboards, coaching processes, and student-driven assessments. | • Identifying the essential relationships between students and faculty required for developing trust
• Developing the trust of the students and faculty in the process
• Developing electronic ad hoc workplace assessments |
UME through a shared understanding of the assessment of trust and a shared trust in that assessment.

Acknowledgments: The authors thank the Association of American Medical Colleges, Carol Aschenbrener, Maryellen Gusic, and all of the members of the Core Entrustable Professional Activities for Entering Residency pilot for their support, inspiration, and contributions to this report. The members of the Entrustment Concept Group include Judith L. Bowen, MD, David Brown, MD, Stephanie Call, MD, MSPH, Ronald E. Drusin, MD, Abbas Hyderi, MD, MPH, Jeremy Moeller, MD, Philip R. Orlander, MD, Melvin Rosenfeld, PhD, Kyla Terhune, MD, Dianne P. Wagner, MD, Jamie B. Warren, MD, MPH, and Sandra Yingling, PhD.

Funding/Support: This work was supported by the Association of American Medical Colleges and by the medical schools participating in the Core Entrustable Professional Activities for Entering Residency pilot.

Other disclosures: None reported.

Ethical approval: Reported as not applicable.

Previous presentations: The work of the Entrustment Concept Group was presented as a poster at Learn Serve Lead: The AAMC Annual Meeting in November 2015 in Baltimore, Maryland, and in November 2016 in Seattle, Washington.

D.R. Brown is vice chair, chief of family and community medicine, and associate professor of humanities, health, and society, Florida International University Herbert Wertheim College of Medicine, Miami, Florida.

J.B. Warren is assistant professor of pediatrics, Oregon Health & Science University School of Medicine, Portland, Oregon.

A. Hyderi is associate dean for curriculum and associate professor of family medicine, University of Illinois College of Medicine, Chicago, Illinois.

R.E. Drusin is vice dean for education and professor of medicine, Columbia University College of Physicians and Surgeons, New York, New York.

J. Moeller is residency program director and assistant professor of neurology, Yale School of Medicine, New Haven, Connecticut.

M. Rosenfeld is senior associate dean for medical education and associate professor of cell biology, New York University School of Medicine, New York, New York.

P.R. Orlander is associate dean for curricular affairs, vice chair for education, and professor of internal medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas.

S. Yingling is associate dean for educational planning and quality improvement and assistant professor of medical education, University of Illinois College of Medicine, Chicago, Illinois. She was manager, Division of Education Quality, Institute for Innovations in Medical Education, New York University School of Medicine, New York, New York, at the time this work began.

S. Call is associate chair for education, residency program director, and professor of medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.

K. Terhune is residency program director and associate professor of surgery, Vanderbilt University School of Medicine, Nashville, Tennessee.

J. Bull is lead specialist in competency-based learning and assessment, Association of American Medical Colleges, Washington, DC.

R. Englander is associate dean for undergraduate medical education, University of Minnesota Medical School, Minneapolis, Minnesota.

D.P. Wagner is associate dean for undergraduate medical education and professor of medicine, Michigan State University College of Human Medicine, East Lansing, Michigan.

References

